Minimum Time to Complete Trips
Time complexity: $O(n\log M)$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
#include <iostream>
#include <vector>
class Solution {
public:
long long minimumTime(std::vector<int>& time, int totalTrips) {
int n = time.size();
if (n == 1) {
return (long long)time[0] * totalTrips;
}
long long left, right, mid, sum = 0;
int min_time = 0x3fff'ffff;
for (int i : time) {
min_time = std::min(i, min_time);
}
right = (long long)totalTrips * min_time + 1;
left = (right - 1) / n;
for (long long mid = (left + right) / 2; right > left; mid = (left + right) / 2) {
if (maxTrips(time, mid, totalTrips)) {
right = mid;
}
else {
left = mid + 1;
}
}
return left;
}
private:
bool maxTrips(std::vector<int>& time, long long t, int totalTrips) {
int trips = 0;
for (int i : time) {
trips += t / i;
if (trips >= totalTrips) {
return true;
}
}
return false;
}
};
|
